Nepřihlášený uživatel
přihlásit se / registrovat

Gastroenterologie
a hepatologie

Gastroenterology and Hepatology

Gastroent Hepatol 2022; 76(4): 309–318. doi: 10.48095/ccgh2022309.

Účinek ketaminu, antagonisty NMDA-receptoru, na žaludeční myoelektrickou aktivitu experimentálních prasat

Jan Bureš1,2,3, Jaroslav Květina Orcid.org  4, Věra Radochová5, Štěpán Suchánek Orcid.org  6, Stanislav Rejchrt Orcid.org  4, Martin Vališ7, Veronika Knoblochová8, Jana Žďárová Karasová Orcid.org  9, Ondřej Soukup9, Darina Kohoutová1,10

+ Pracoviště

Souhrn

Úvod: Téměř všechny preklinické studie u experimentálních prasat je třeba provádět v celkové anestezii. Ketamin je běžně používán jako úvod do anestezie. Avšak dosud nezodpovězenou otázkou je, zda ketamin, antagonista NMDA-receptorů, ovlivňuje motorické funkce žaludku. Cílem této práce bylo vyšetřit žaludeční myoelektrickou aktivitu prasete metodou elektrogastrografie (EGG). Metody: Do studie bylo zařazeno 17 samic Sus scrofa f. domestica (průměrná hmotnost 36,2 ± 3,8 kg). Pro úvod do anestezie byla použita různá léčiva: skupina A (n = 5): medetomidin 0,1 mg/kg i. m.; butorfanol 0,3 mg/kg i. m.; midazolam 0,3 mg/kg i. m.; skupina B (n = 6): azaperon 2,2 mg/kg i. m.; skupina C (n = 6): ketamin 20 mg/kg i. m.; azaperon 2,2 mg/kg i. m. Celková anestezie ve všech skupinách pokračovala podáváním 1% propofolu (opakované 1ml bolusy, celkem 10–12 ml i.v.). Záznam EGG začal za 15 min. po úvodu do anestezie a trval 30 min. Výsledky byly vyhodnoceny jako dominantní frekvence pomalých žaludečních vln (DF) a plochy pod křivkou (EGG power). Výsledky: Celkem bylo vyhodnoceno 510 jednominutových EGG intervalů (každý dvakrát: DF a power). DF byly (průměr ± směrodatná odchylka): 1,4 ± 0,4 (skupina A), 1,3 ± 0,3 (skupina B) a 0,2 ± 0,1 cykly/min. (skupina C). Rozdíly mezi skupinou C a skupinami A a B byly statisticky významné (p < 0,001). Mediány ploch pod křivkou (IQR) byly: 0,13 (0,02–0,44; skupina A); 0,13 (0,03–0,54; skupina B) a 0,30 V2 (0,07–1,44; skupina C). Rozdíl mezi skupinami A a C byl na hranici statistické významnosti (p = 0,066; chyba 2. typu beta 0,295). Závěry: Ketamin, a to i v jedné intramuskulární dávce, ovlivňuje myoelektrické funkce žaludku prasete. Proto by neměl být používán v preklinických studiích gastrointestinální motility experimentálních prasat.

Klíčová slova

ketamin, antagonista receptorů NMDA (N-metyl-D-aspartát), elektrogastrografie, myoelektrická aktivita žaludku, experimentální prase




Článek je v angličtině, prosím přepněte do originální verze.

Pro přístup k článku se, prosím, registrujte.

Výhody pro předplatitele

Výhody pro přihlášené

Literatura

1. Said H (ed). Physiology of the Gastrointestinal Tract. 6th ed. London: Academic Press 2018.
2. Gürlich R, Maruna P, Frasko R. Transcutaneous electrogastrography in the perioperative period in patients undergoing laparoscopic cholecystectomy and laparoscopic non-adjustable gastric banding. Obes Surg 2003; 13(5): 714–720. doi: 10.1381/096089203322509273.
3. Pozler O, Neumann D, Vorisek V et al. Development of gastric emptying in premature infants. Use of the 13C-octanoic acid breath test. Nutrition 2003; 19(7–8): 593–596. doi: 10.1016/S0899-9007(03)00064-9.
4. Sýkora J, Malán A, Záhlava J et al. Gastric emptying of solids in children with H. pylori-positive and H. pylori-negative non-ulcer dyspepsia. J Pediatr Gastroenterol Nutr 2004; 39(3): 246–252. doi: 10.1097/00005176-200409000-00004.
5. Bureš J, Kopáčová M, Voříšek V et al. Examination of gastric emptying rate by means of 13C-octanoic acid breath test. Methods of the test for adults and results of the investigation of healthy volunteers [in Czech]. Cas Lek ces 2005; 144(Suppl 3): 18–22.
6. Kojecky V, Bernatek J, Horowitz M et al. Prevalence and determinants of delayed gastric emptying in hospitalised Type 2 diabetic patients. World J Gastroenterol 2008; 14(10): 1564–1569. doi: 10.3748/wjg.14.1564.
7. Frasko R, Maruna P, Gurlich R, Trca S. Transcutaneous electrogastrography in patients with ileus. Relations to interleukin-1beta, interleukin-6, procalcitonin and C-reactive protein. Eur Surg Res 2008; 41(2): 197–202. doi: 10.1159/000134918.
8. Maruna P, Frasko R, Lindner J. Disturbances of gastric electrical control activity after laparotomic cholecystectomy are related to interleukin-6 concentrations. Eur Surg Res 2009; 43(4): 317–324. doi: 10.1159/000235569.
9. O‘Grady G, Angeli TR, Du P et al. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 2012; 143(3): 589–598.e3. doi: 10.1053/j.gastro.2012.05.036.
10. Michalsky D, Dvorak P, Belacek J et al. Radical resection of the pyloric antrum and its effect on gastric emptying after sleeve gastrectomy. Obes Surg 2013; 23(4): 567–573. doi: 10.1007/s11695-012-0850-6.
11. O‘Grady G, Abell TL. Gastric arrhythmias in gastroparesis: low- and high-resolution mapping of gastric electrical activity. Gastroenterol Clin North Am 2015; 44(1): 169–184. doi: 10.1016/j.gtc.2014.11.013.
12. Carlson DA, Kahrilas PJ, Lin Z et al. Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe. Am J Gastroenterol 2016; 111(12): 1726–1735.
13. Hajer J, Novák M. Development of an Autonomous Endoscopically Implantable Submucosal Microdevice Capable of Neurostimulation in the Gastrointestinal Tract. Gastroenterol Res Pract 2017; 2017: 8098067. doi: 10.1155/ 2017/8098067.
14. Gharibans AA, Coleman TP, Mousa H et al. Spatial Patterns From High-Resolution Electrogastrography Correlate With Severity of Symptoms in Patients With Functional Dyspepsia and Gastroparesis. Clin Gastroenterol Hepatol 2019; 17(13): 2668–2677. doi: 10.1016/j.cgh.2019.04.039.
15. Sangnes DA, Søfteland E, Bekkelund M et al. Wireless motility capsule compared with scintigraphy in the assessment of diabetic gastroparesis. Neurogastroenterol Motil 2020; 32(4): e13771. doi: 10.1111/nmo.13771.
16. Weusten BLAM, Barret M, Bredenoord AJ et al. Endoscopic management of gastrointestinal motility disorders – part 1: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2020; 52(6): 498–515. doi: 10.1055/a-1160-5549.
17. Balihar K, Kotyza J, Zdrhova L et al. Characterization of esophageal motor activity, gastroesophageal reflux, and evaluation of prokinetic effectiveness in mechanically ventilated critically ill patients: a high-resolution impedance manometry study. Crit Care 2021; 25(1): 54. doi: 10.1186/s13054-021-03479-8.
18. Carson DA, O‘Grady G, Du P et al. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity. Neurogastroenterol Motil 2021; 33(3): e14048. doi: 10.1111/nmo.14048.
19. O‘Grady G, Gharibans A, Calder S et al. Retrograde slow-wave activation: a missing link in gastric dysfunction? Neurogastroenterol Motil 2021; 33(4): e14112. doi: 10.1111/nmo.14112.
20. Martinek R, Ladrova M, Sidikova M et al. Advanced Bioelectrical Signal Processing Methods: Past, Present, and Future Approach – Part III: Other Biosignals. Sensors (Basel) 2021; 21(18): 6064. doi: 10.3390/s21186064.
21. McCallum RW, Parkman H, Clarke J et al. Gastroparesis. Pathophysiology, Clinical Presentation, Dia­gnosis and Treatment. London: Academic Press 2020.
22. Kamiya T, Fukuta H, Hagiwara H et al. Disturbed gastric motility in patients with long-standing diabetes mellitus. J Smooth Muscle Res 2022; 58(0): 1–10. doi: 10.1540/jsmr.58.1.
23. Martinek J, Hustak R, Mares J et al. Endoscopic pyloromyotomy for the treatment of severe and refractory gastroparesis: a pilot, randomised, sham-controlled trial. Gut 2022; 326904. doi: 10.1136/gutjnl-2022-326904.
24. Chen JZ, McCallum RW (eds). Electrogastrography. Principles and Applications. New York: Raven Press 1994.
25. Koch KL, Stern RM. Handbook of Electrogastrography. Oxford: Oxford University Press 2003. doi: 10.1093/oso/9780195147889.001.0001.
26. Parkman HP, Hasler WL, Barnett JL et al. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil 2003; 15(2): 89–102. doi: 10.1046/j.1365-2982.2003.00396.x.
27. Bureš J, Kopáčová M, Voříšek V et al. Correlation of electrogastrography and gastric emptying rate estimated by 13C-octanoic acid breath test in healthy volunteers. Folia Gastroenterol Hepatol 2007; 5(1): 5–11.
28. Bures J, Kabelác K, Kopácová M et al. Electrogastrography in patients with Roux-en-Y reconstruction after previous Billroth gastrectomy. Hepato-Gastroenterology 2008; 55(85): 1492–1496.
29. Alvarez WC, Mahoney LJ. Action currents in stomach and intestine. Am J Physiol 1922; 58(3): 476–493. doi: 10.1152/ajplegacy.1922.58.3.476.
30. Mintchev MP, Otto SJ, Bowes KL. Electrogastrography can recognize gastric electrical uncoupling in dogs. Gastroenterology 1997; 112(6): 2006–2011. doi: 10.1053/gast.1997.v112.pm9178693.
31. Andreis U, Américo MF, Corá LA et al. Gastric motility evaluated by electrogastrography and alternating current bio­­susceptometry in dogs. Physiol Meas 2008; 29(9): 1023–1031. doi: 10.1088/0967-3334/29/9/002.
32. Koenig JB, Martin CEW, Dobson H et al. Use of multichannel electrogastrography for noninvasive assessment of gastric myoelectrical activity in dogs. Am J Vet Res 2009; 70(1): 11–15. doi: 10.2460/ajvr.70.1.11.
33. Květina J, Edakkanambeth Varayil J, Ali SM et al. Preclinical electrogastrography in experimental pigs. Interdiscip Toxicol 2010; 3(2): 53–58. doi: 10.2478/v10102-010-0011-5.
34. Bures J, Kvetina J, Pavlik M et al. Impact of paraoxon followed by acetylcholinesterase reactivator HI-6 on gastric myoelectric activity in experimental pigs. Neuro Endocrinol Lett 2013; 34(2): 79–83.
35. Květina J, Tachecí I, Pavlík M et al. Use of electrogastrography in preclinical studies of cholinergic and anticholinergic agents in experimental pigs. Physiol Res 2015; 64(5): S647–S652. doi: 10.33549/physiolres.933227.
36. Bureš J, Jun D, Hrabinová M et al. Impact of tacrine and 7-methoxytacrine on gastric myo­electrical activity assessed using electrogastro­graphy in experimental pigs. Neuro Endocrinol Lett 2015; 36(1): 150–155.
37. Poscente MD, Mintchev MP. Enhanced electrogastrography: A realistic way to salvage a promise that was never kept? World J Gastroenterol 2017; 23(25): 4517–4528. doi: 10.3748/wjg.v23.i25.4517.
38. Dallagnol DJR, Corá LA, Gama LA et al. Gastrointestinal Side Effects of Triple Immunosuppressive Therapy Evaluated by AC Biosusceptometry and Electrogastrography in Rats. Endocr Metab Immune Disord Drug Targets 2020; 20(9): 1494–1503. doi: 10.2174/1871530320666200505111456.
39. Sukasem A, Calder S, Angeli-Gordon TR et al. In vivo experimental validation of detection of gastric slow waves using a flexible multichannel electrogastrography sensor linear array. Biomed Eng Online 2022; 21(1): 43. doi: 10.1186/s12938-022-01010-w.
40. Bures J, Kvetina J, Tacheci I et al. The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. J Appl Biomed 2015; 13(4): 273–277. doi: 10.1016/ j.jab.2015.04.004.
41. Bureš J, Tachecí I, Květina J et al. Experimental electrogastrography [in Czech]. Gastroent Hepatol 2014; 68(3): 237–242.
42. Suenderhauf C, Parrott N. A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. Pharm Res 2013; 30(1): 1–15. doi: 10.1007/s11095-012-0911-5.
43. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and bio­­chemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 1995; 16(5): 351–380. doi: 10.1002/bdd.2510160502.
44. Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. Transl Res 2015; 166(1): 12–27. doi: 10.1016/ j.trsl.2015.01.004.
45. Tveden-Nyborg P, Bergmann TK, Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol 2018; 123(3): 233–235. doi: 10.1111/bcpt.13059.
46. Boschert K, Flecknell PA, Fosse RT et al. Keta­mine and its use in the pig. Recommendations of the Consensus meeting on Ketamine Anaesthesia in Pigs, Bergen 1994. Ketamine Consensus Working Group. Lab Anim 1996; 30(3): 209–219. doi: 10.1258/002367796780684863.
47. Pehböck D, Dietrich H, Klima G et al. Anesthesia in swine: optimizing a laboratory model to optimize translational research. Anaesthesist 2015; 64(1): 65–70. doi: 10.1007/s00101-014-2371-2.
48. Nowacka A, Borczyk M. Ketamine applications beyond anesthesia – A literature review. Eur J Pharmacol 2019; 860: 172547. doi: 10.1016/j.ejphar.2019.172547.
49. Carlsen MF, Christoffersen BØ, Lindgaard R et al. Implantation of telemetric blood pressure transmitters in Göttingen Minipigs: Validation of 24-h systemic blood pressure and heart rate monitoring and influence of anaesthesia. J Pharmacol Toxicol Methods 2022; 115: 107168. doi: 10.1016/j.vascn.2022.107168.
50. Zanos P, Moaddel R, Morris PJ et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev 2018; 70(3): 621–660. doi: 10.1124/ pr.117.015198.
51. Kurdi MS, Theerth KA, Deva RS. Ketamine: Current applications in anesthesia, pain, and critical care. Anesth Essays Res 2014; 8(3): 283–290. doi: 10.4103/0259-1162.143110.
52. Persson J. Wherefore ketamine? Curr Opin Anaesthesiol 2010; 23(4): 455–460. doi: 10.1097/ACO.0b013e32833b49b3.
53. Bures J, Kvetina J, Radochova V et al. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS One 2020; 15(1): e0227781. doi: 10.1371/journal.pone.0227781.
54. Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123). Strasbourg: Council of Europe, 1986.
55. Wolff K, Winstock AR. Ketamine: from medicine to misuse. CNS Drugs 2006; 20(3): 199–218. doi: 10.2165/00023210-200620030-00003.
56. Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol 2008; (182): 313–333. doi: 10.1007/978-3- 540-74806-9_15.
57. White PF, Way WL, Trevor AJ. Ketamine: its pharmacology and therapeutic uses. Anesthesiology 1982; 56(2): 119–136. doi: 10.1097/ 000 00542-198202000-00007.
58. Green SM, Nakamura R, Johnson NE. Keta­mine sedation for pediatric procedures: Part 1, A prospective series. Ann Emerg Med 1990; 19(9): 1024–1032. doi: 10.1016/s0196-0644(05)82568-5.
59. Cicero L, Fazzotta S, Palumbo VD et al. Anesthesia protocols in laboratory animals used for scientific purposes. Acta Biomed 2018; 89(3): 337–342. doi: 10.23750/abm.v89i3.5824.
60. Schnoor J, Bartz S, Klosterhalfen B et al. A long-term porcine model for measurement of gastrointestinal motility. Lab Anim 2003; 37(2): 145–154. doi: 10.1258/00236770360563796.
61. Schnoor J, Unger JK, Kochs B et al. Effects of a single dose of ketamine on duodenal motility activity in pigs. Can Vet J 2005; 46(2): 147–152.
62. Linkenhoker JR, Burkholder TH, Linton CG et al. Effective and safe anesthesia for Yorkshire and Yucatan swine with and without cardiovascular injury and intervention. J Am Assoc Lab Anim Sci 2010; 49(3): 344–351.
63. Healy TE, Foster GE, Evans DF et al. Effect of some i.v. anaesthetic agents on canine gastrointestinal motility. Br J Anaesth 1981; 53(3): 229–233. doi: 10.1093/bja/53.3.229.
64. Shinozaki H, Gotoh Y, Ishida M. Selective N-methyl-D-aspartate (NMDA) antagonists increase gastric motility in the rat. Neurosci Lett 1990; 113(1): 56–61. doi: 10.1016/0304-3940(90)90494-t.
65. Kounenis G, Koutsoviti-Papadopoulou M, Elezoglou V. Ketamine may modify intestinal motility by acting at GABAA-receptor complex; an in vitro study on the guinea pig intestine. Pharmacol Res 1995; 31(6): 337–340. doi: 10.1016/1043-6618(95)80086-7.
66. Fass J, Bares R, Hermsdorf V et al. Effects of intravenous ketamine on gastrointestinal motility in the dog. Intensive Care Med 1995; 21(7): 584–589.
67. Elfenbein JR, Robertson SA, Corser AA et al. Systemic effects of a prolonged continuous infusion of ketamine in healthy horses. J Vet Intern Med 2011; 25(5): 1134–1137.
68. Bures J, Tacheci I, Kvetina J et al. The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. Molecules 2021; 26(8): 2160. doi: 10.3390/molecules26082160.
69. Bures J, Tacheci I, Kvetina J et al. Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. Pharmaceuticals (Basel) 2021; 14(6): 590. 10.3390/ph14060590.
70. Gideons ES, Kavalali ET, Monteggia LM. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci U S A 2014; 111(23): 8649–8654. doi: 10.1073/pnas.1323920111.
71. Johnson JW, Glasgow NG, Povysheva NV. Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol 2015; 20: 54–63. doi: 10.1016/j.coph.2014.11.006.
72. Glasgow NG, Povysheva NV, Azofeifa AM et al. Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization. J Neurosci 2017; 37(40): 9686–9704. doi: 10.1523/JNEUROSCI. 1173-17.2017.

Kreditovaný autodidaktický test