Use of artificial intelligence in colonoscopy
Dana Zimandlová1, Ilja Tachecí1
+ Affiliation
Summary
Background: Artificial intelligence (AI) has emerged as a powerful tool to enhance and standardise the quality of colonoscopy. Its benefits include improved lesion detection, support for examination quality, and potential cost reduction by limiting the need for histological analyses and improving colorectal cancer screening strategies. Purpose: This review aims to evaluate current applications of AI in colonoscopy, focusing on computer-aided detection (CADe), computer-aided diagnosis (CADx), assessment of inflammatory bowel disease (IBD), quality indicators of colonoscopy, and an overview of expert society recommendations. Conclusions: AI has been shown to improve adenoma detection rates, especially among less experienced endoscopists. CADx may aid in optical diagnosis of diminutive polyps, although its accuracy often falls short of thresholds required to replace histology. In the context of IBD, AI has demonstrated potential in standardising disease activity scoring and dysplasia detection, although clinical application remains experimental. Additional uses include automated assessment of bowel preparation, mucosal visualisation, and caecal intubation. Economic and regulatory aspects remain critical to broader implementation. AI holds promise in supporting quality improvement in colonoscopy, particularly through lesion detection and procedural standardisation. However, limitations persist – such as lack of standardised training data, inconsistent performance across AI models, and insufficient real-world data on long-term epidemiological impact. Implementation should be approached with transparency, awareness of limitations, and consideration of health system constraints.
Keywords
colonoscopy, artificial intelligence, CADe, CADx, inflammatory bowel disease, quality of endoscopyTo read this article in full, please register for free on this website.
Benefits for subscribers
Benefits for logged users
Literature
1. Spadaccini M, Massimi D, Mori Y et al. Artificial intelligence-aided endoscopy and colorectal cancer screening. Diagnostics 2023; 13(6): 1102. doi: 10.3390/diagnostics13061102.
2. Biamonte P, Damico F, Fasulo E et al. New technologies in digestive endoscopy for ulcerative colitis patients. Biomedicines 2023; 11(8): 2139. doi: 10.3390/biomedicines11082139.
3. Messmann H, Bisschops R, Antonelli G et al. Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022; 54(12): 1211–1231. doi: 10.1055/a-1950-5694.
4. Urban G, Tripathi P, Alkayali T et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 2018; 155(4): 1069.e8–1078.e8. doi: 10.1053/j.gastro.2018.06.037.
5. Taghiakbari M, Mori Y, von Renteln D. Artificial intelligence-assisted colonoscopy: a review of current state of practice and research. World J Gastroenterol 2021; 27(47): 8103–8122. doi: 10.3748/wjg.v27.i47.8103.
6. Soleymanjahi S, Huebner J, Elmansy L et al. Artificial intelligence.assisted colonoscopy for polyp detection. Ann Intern Med 2024; 177(12): 1652–1663. doi: 10.7326/ANNALS-24-00981.
7. Hassan C, Spadaccini M, Mori Y et al. Real-time computer-aided detection of colorectal neoplasia during colonoscopy: a systematic review and meta-analysis. Ann Intern Med 2023; 176(9): 1209–1220. doi: 10.7326/M22-3678.
8. Berzin TM, Parasa S, Wallace MB et al. Position statement on priorities for artificial intelligence in GI endoscopy: a report by the ASGE Task Force. Gastrointest Endosc 2020; 92(4): 951–959. doi: 10.1016/j.gie.2020.06.035.
9. Bretthauer M, Ahmed J, Antonelli G et al. Use of computer-assisted detection (CADe) colonoscopy in colorectal cancer screening and surveillance: ESGE position statement. Endoscopy 2025. doi: 10.1055/a-2543-0370. In press.
10. Sultan S, Shung DL, Kolb JM et al. AGA living clinical practice guideline on computer-aided detection assisted colonoscopy. Gastroenterology 2025; 168(4): 691–700. doi: 10.1053/j.gastro.2025.01.002.
11. Falt P, Cyrany J, Kunovský L et al. Doporučené postupy České gastroenterologické společnosti ČLS JEP pro diagnostickou a terapeutickou koloskopii – aktualizované vydání 2024. Gastroent Hepatol 2024; 78(3): 197–235. doi: 10.48095/ccgh2024197.
12. Houwen BBSL, Hassan C, Coupé VMH et al. Definition of competence standards for optical diagnosis of diminutive colorectal polyps: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022; 54(1): 88–99. doi: 10.1055/a-1689-5130.
13. Hossain E, Abdelrahim M, Tanasescu A et al. Performance of a novel computer-aided diagnosis system in the characterization of colorectal polyps, and its role in meeting Preservation and Incorporation of Valuable Endoscopic Innovations standards set by the American Society of Gastrointestinal Endoscopy. DEN Open 2023; 3(1): e178. doi: 10.1002/deo2.178.
14. Young EJ, Rajandran A, Philpott HL et al. Mucosal imaging in colon polyps: new advances and what the future may hold. World J Gastroenterol 2022; 28(47): 6632–6661. doi: 10.3748/wjg.v28.i47.6632.
15. Rizkala T, Hassan C, Mori Y et al. Accuracy of computer -aided diagnosis in colonoscopy varies according to polyp location: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2025; 23(4): 531–541. doi: 10.1016/j.cgh.2024.08.021.
16. Hassan C, Misawa M, Rizkala T et al. Computer-aided diagnosis for colorectal polyps in situ. Ann Intern Med 2024; 177(7): 919–928. doi: 10.7326/M23-2865.
17. Young E, Edwards L, Singh R. The role of artifical intelligence in colorectal cancer screening: lesion detection and lesion characterization. Cancers 2023; 15(21): 5126. doi: 10.3390/cancers152115126.
18. Thijssen A, Schreuder RM, Dehghani N et al. Improving the endoscopic recognition of early colorectal carcinoma using artificial intelligence: current evidence and future directions. Endosc Int Open 2024: 12(10): E1102–E1117. doi: 10.1055/a-2403-3103.
19. Ichimasa K, Kudo S, Misawa M et al. Role of artificial intelligence in the management of T1 colorectal cancer. Dig Liver Dis 2024; 56(7): 1144–1147. doi: 10.1016/j.dld.2024.01.202.
20. Bai J, Liu K, Gao L et al. Computer-aided diagnosis in predicting the invasion depth of early colorectal cancer: a systematic review and meta-analysis of diagnostic test accuracy. Surg Endosc 2023; 37(9): 6627–6639. doi: 10.1007/s00464-023-10223-6.
21. Pal P, Pooja K, Nabi Z et al. Artificial intelligence in endoscopy related to inflammatory bowel disease: a systematic review. Indian J Gastroenterol 2024; 43(1): 172–187. doi: 10.1007/s12664-024-01531-3.
22. Yang LS, Perry E, Shan L et al. Clinical application and diagnostic accuracy of artificial intelligence in colonoscopy for inflammatory bowel disease: systematic review. Endosc Int Open 2022; 10(7): E1004–E1013. doi: 10.1055/ a-1846-0642.
23. Fernandes SR, Pinto JSLD, da Costa PM et al. Disagreement among gastroenterologists using the Mayo and Rutgeerts Endoscopic Scores. Inflamm Bowel Dis 2018; 24(2): 254–260. doi: 10.1093/ibd/izx066.
24. Huang TY, Zhan SQ, Chen PJ et al. Accurate diagnosis of endoscopic mucosal healing in ulcerative colitis using deep learning and machine learning. J Chin Med Assoc 2021; 84(7): 678–681. doi: 10.1097/JCMA.0000000000000559.
25. Solitano V, Zilli A, Franchelucci G et al. Artificial endoscopy and inflammatory bowel disease: welcome to the future. J Clin Med 2022; 11(3): 569. doi: 10.3390/jcm11030569.
26. Vinsard DG, Fetzer JR, Agrawal U et al. Development of an artificial intelligence tool for detecting colorectal lesions in iflammatory bowel disease. Innovations 2023; 2(2): 91–101. doi: 10.1016/j.igie.2023.03.004.
27. Rex DK, Schoenfeld PS, Cohen J et al. Quality indicators for colonoscopy. Gastrointest Endosc 2015; 81(1): 31–53. doi: 10.1016/j.gie.2014.07.058.
28. Lebwohl B, Kastrinos F, Gllick M et al. The impact of suboptimal bowel preparation on adenoma miss rates and the factors associated with early repeat colonoscopy. Gastrointest Endosc 2011; 73(6): 1207–1214. doi: 10.1016/j.gie.2011.01.051.
29. Zhou J, Wu L, Wan X et al. A novel artifical intelligence system for the assessment of bowel preparation (with video). Gastrointes Endosc 2020; 91(2): 428.e2–435.e2. doi: 10.1016/j.gie.2019.11.026.
30. Filip D, Gao X, Angulo-Rodriguéz L et al. Colometer: a real-time quality feedback system for screening colonoscopy. World J Gastroenterol 2012; 18(32): 4270–4277. doi: 10.3748/wjg.v18.i32.4270.
31. Taghiakbari M, Mori Y, von Renteln D. Artificial intelligence-assisted colonoscopy: a review of current state of practice and research. World J Gastroenterol 2021; 27(47): 8103–8122. doi: 10.3748/wjg.v27.i47.8103.
32. Tham S, Koh FH, Ladlad J et al. The imitation game: a review of the use of artificial intelligence in colonoscopy, and endoscopists perception thereof. Ann Coloproctol 2023; 39(5): 385–394. doi: 10.3393/ac.2022.00878.0125.
33. Antonelli G, Rizkala T, Lacopini F et al. Current and future implications of artificial intelligence in colonoscopy. Ann Gastroenterol 2023; 36(2): 114–122. doi: 10.20524/aog. 2023.0781.
34. Mori Y, Kudo SE, East JE et al. Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial. Gastrointest Endosc 2020; 92(4): 905.e1–911.e1. doi: 10.1016/j.gie.2020.03.3759.
35. Areia M, Mori Y, Correale L et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit Health 2022; 4(6): e436–e444. doi: 10.1016/S2589-7500(22)00042-5.
36. Berzin TM, Parasa S, Wallace MB et al. Postion statement on priorities for artificial intelligence in GI endoscopy: a report by the ASGE Task Force. Gastrointest Endosc 2020; 92(4): 951–959. doi: 10.1016/j.gie.2020.06.035.