Anonymous User
Login / Registration

a hepatologie

Gastroenterology and Hepatology

Gastroent Hepatol 2021; 75(5): 424–431. doi: 10.48095/ccgh2021424.

Status of robotic and minimally invasive foregut tumour surgery

Radek Pohnán  1, Jaroslav Kalvach1, Miroslav Ryska1, Daniel Langer  1, Jaroslav Pažin1, Jan Hadač1

+ Affiliation


Esophagectomy and gastrectomy are essential curative methods in the treatment of non-metastatic malignancies of the esophagus and stomach. Video-assisted minimally invasive resections of the esophagus and stomach have demonstrated surgical and oncological safety and can be used as part of multimodal treatment strategy. Robot-assisted surgical operations are a new technology in the field of mini-invasive upper gastrointestinal surgery. The technical advantages of robotic systems combining minimally invasive surgical approaches with the possibility of multi-element articulation of robotic instruments in the operating field lead to a worldwide expansion of robotic centers. Further technological development can be expected to enhance support and facilitation of minimally invasive surgery and to further reduction of the surgical stress while adhering to the criteria of radical oncosurgery.


laparoscopy, gastrektomie, robotická chirurgie, miniinvazivní chirurgie, ezofagektomie

To read this article in full, please register for free on this website.

Benefits for subscribers

Benefits for logged users


1. Berlth F, Knospe L, Jansen-Winkeln B et al. Status of minimally invasive gastrectomy: current advancements: robotic surgery and intraoperative imaging for gastric cancer. Chirurg 2021; 92(6): 528–534. doi: 10.1007/s00104-021-01391-z.
2. Smyth EC, Verheij M, Allum W et al. Gastric cancer: ESMO clinical practice guidelines for dia­gnosis, treatment and follow-up. Ann Oncol 2016; 27(5): 38–49. doi: 10.1093/annonc/mdw350.
3. Lordick F, Mariette C, Haustermans K et al. Oesophageal cancer: ESMO clinical practice guidelines for dia­gnosis, treatment and follow-up. Ann Oncol. 2016; 27(Suppl 5): v50–v57. doi: 10.1093/annonc/mdw329.
4. Billroth T. Über 124 vom November 1878 bis Juni 1890 in meiner Klinik und Privatpraxis ausgeführte Resectionen am Magen‐Darmcanal, Gastro‐Enterostomien und Narbenlosungen wegen chronischer Krankheitsprocesse. Wiener klin Wochenschrift 1891; 4: S625–S628.
5. Terashima M. The 140 years‘ journey of gastric cancer surgery: from the two hands of Billroth to the multiple hands of the robot. Ann Gastroenterol Surg 2021; 5(3): 270–277. doi: 10.1002/ags3.12442.
6. Degiuli M, Sasako M, Ponti A et al. Italian gastric cancer study group. Randomized clinical trial comparing survival after D1 or D2 gastrectomy for gastric cancer. Br J Surg 2014; 101(2): 23–31. doi: 10.1002/bjs.9345.
7. Jínek T, Adamčík L, Vrba R et al. Risk factors and post-operative complications after gastrectomy for cancer. Rozhl Chir 2018; 97(8): 384–393.
8. Torek F. The first successful case of resection of the thoracic portion of the oesophagus for carcinoma. Surg Gyn Obstetr 1913; 16: 614.
9. Lewis I. The surgical treatment of carcinoma of the oesophagus; with special reference to a new operation for growths of the middle third. Br J Surg 1946; 34: 18–31. doi: 10.1002/bjs.18003413304.
10. Orringer MB, Sloan H. Esophagectomy without thoracotomy. J Thorac Cardiovasc Surg 1978; 76(5): 643–654.
11. Jamieson GG, Mathew G, Ludemann R et al. Postoperative mortality following oesophagectomy and problems in reporting its rate. Br J Surg 2004; 91(8): 943–947. doi: 10.1002/bjs.4596.
12. Lerut T, Wiesel O. History of esophagectomy for cancer of the esophagus and the gastroesophageal junction. Ann Transl Med 2021; 9(10): 897. doi: 10.21037/atm-21-676.
13. Kitano S, Iso Y, Moriyama M et al. Laparoscopy‐assisted Billroth I gastrectomy. Surg Laparosc Endosc 1994; 4(2): 146–148.
14. Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer 2021; 24(1): 1–21. doi: 10.1007/s10120-020-01042-y.
15. Katai H, Sasako M, Fukuda H et al. Safety and feasibility of laparoscopy‐assisted distal gastrectomy with suprapancreatic nodal dissection for clinical stage I gastric cancer: a multicenter phase II trial (JCOG 0703). Gastric Cancer 2010; 13(4): 238–244. doi: 10.1007/s10120-010-05 65-0.
16. Katai H, Mizusawa J, Katayama H et al. Survival outcomes after laparoscopy‐assisted distal gastrectomy versus open distal gastrectomy with nodal dissection for clinical stage IA or IB gastric cancer (JCOG0912): a multicentre, noninferiority, phase 3 randomised controlled trial. Lancet Gastroenterol Hepatol 2020; 5(2): 142–145. doi: 10.1016/S2468-1253(19)30332-21.
17. Hyung WJ, Yang HK, Han SU et al. A feasibility study of laparoscopic total gastrectomy for clinical stage I gastric cancer: a prospective multi‐center phase II clinical trial, KLASS 03. Gastric Cancer 2019; 22(1): 214–222. doi: 10.1007/ s10120-018-0864-4.
18. Yu J, Huang CM, Sun YH et al. Effect of laparoscopic vs open distal gastrectomy on 3‐year disease‐free survival in patients with locally advanced gastric cancer. The CLASS‐01 randomized clinical trial. JAMA 2019; 321: 1983–1992. doi: 10.1001/jama.2019.5359.
19. Hyung WJ, Yang HK, Park YK et al. Long‐term outcomes of laparoscopic distal gastrectomy for locally advanced gastric cancer: The KLASS‐02‐RCT randomized clinical trial. J Clin Oncol 2020; 38(28): 3304–3313. doi: 10.1200/JCO.20.01210.
20. Etoh T, Shiroshita H, Shiraishi N et al. Ongoing clinical studies of minimally invasive surgery for gastric cancer in Japan. Transl Gastroenterol Hepatol 2016; 11(1): 31. doi: 10.21037/tgh.2016.03.15.
21. van der Wielen N, Straatman J, Daams F et al. Open versus minimally invasive total gastrectomy after neoadjuvant chemotherapy: results of a European randomized trial. Gastric Cancer 2021; 24(1): 258–271. doi: 10.1007/s10120-020-01109-w.
22. Hiki N, Honda M, Etoh T et al. Higher incidence of pancreatic fistula in laparoscopic gastrectomy. Real-world evidence from a nationwide prospective cohort study. Gastric Cancer 2018; 21(1): 162–170. doi: 10.1007/s101 20-017-0764-z.
23. Hashizume M, Shimada M, Tomikawa M et al. Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc 2002; 16(8): 1187–1191. doi: 10.1007/s004640080154.
24. Kakeji Y, Konishi K, Ieiri S et al. Robotic laparoscopic distal gastrectomy: a comparison of the da Vinci and Zeus systems. Int J Med Robot 2006; 2(4): 299–304. doi: 10.1002/rcs.104.
25. Guerrini GP, Esposito G, Magistri P et al. Robotic versus laparoscopic gastrectomy for gastric cancer: the largest meta-analysis. Int J Surg 2020; 82: 210–228. doi: 10.1016/ j.ijsu.2020.07.053.
26. Kuwabara S, Okabe H, Terashima M. Clinical advantages of robotic gastrectomy for clinical stage I/II gastric cancer: a multi-institutional prospective single-arm study. Gastric Cancer 2019; 22(2): 377–385. doi: 10.1007/s101 20-018-00906-8.
27. Giri S, Sarkar DK. Current status of robotic surgery. Indian J Surg 2012; 74(3): 242–247. doi: 10.1007/s12262-012-0595-4.
28. Shemmeri E, Wee JO. Robotics and minimal­ly invasive esophageal surgery. Ann Transl Med 2021; 9(10): 898. doi: 10.21037/atm-20-4138.
29. Cuschieri A, Shimi S, Banting S. Endoscopic oesophagectomy through a right thoracoscopic approach. J R Coll Surg Edinb 1992; 37(1): 7–11.
30. DePaula AL, Hashiba K, Ferreira EA et al. Laparoscopic transhiatal esophagectomy with esophagogastroplasty. Surg Laparosc Endosc 1995; 5(1): 1–5.
31. Luketich JD, Alvelo-Rivera M, Buenaventura PO et al. Minimally invasive esophagectomy: outcomes in 222 patients. Ann Surg 2003; 238(4): 486–494; doi: 10.1097/01.sla.0000089858.40725.68.
32. Luketich JD, Pennathur A, Franchetti Y et al. Minimally invasive esophagectomy: results of a prospective phase II multicenter trial-the eastern cooperative oncology group (E2202) study. Ann Surg 2015; 261(4): 702–707. doi: 10.1097/SLA.0000000000000993.
33. Biere SSAY, van Berge Henegouwen MI, Maas KW et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial. Lancet 2012; 379(9829): 1887–1892. doi: 10.1016/S0140-6736(12)60516-9.
34. Mariette C, Markar SR, Dabakuyo-Yonli TS et al. Fédération de Recherche en Chirurgie (FRENCH) and French Eso-Gastric Tumors (FREGAT) Working Group. Hybrid Minimally Invasive Esophagectomy for Esophageal Cancer. N Engl J Med 2019; 380(2): 152–162. doi: 10.1056/NEJMoa1805101.
35. Kernstine KH, DeArmond DT, Karimi M et al. The robotic, 2-stage, 3-field esophagolymphadenectomy. J Thorac Cardiovasc Surg 2004; 127(6): 1847–1849. doi: 10.1016/j.jtcvs.2004.02.014.
36. Chao YK, Wen YW, Chuang WY et al. Transition from video-assisted thoracoscopic to robotic esophagectomy: a single surgeon‘s experience. Dis Esophagus 2020; 33(2): doz033. doi: 10.1093/dote/doz033.
37. Okusanya OT, Sarkaria IS, Hess NR et al. Robotic assisted minimally invasive esophagectomy (RAMIE): the University of Pittsburgh Medical Center initial experience. Ann Cardiothorac Surg 2017; 6(2): 179–185. doi: 10.21037/acs.2017.03.12.
38. van der Sluis PC, van der Horst S, May AM et al. Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer: a randomized controlled trial. Ann Surg 2019; 269(4): 621–630. doi: 10.1097/SLA.0000000000003031.
39. van der Sluis PC, Ruurda JP, Verhage RJ et al. Oncologic long-term results of robot-assisted minimally invasive thoraco-laparoscopic esophagectomy with two-field lymphadenectomy for esophageal cancer. Ann Surg Oncol 2015; 22 Suppl 3: S1350–1356. doi: 10.1245/s10434-015-4544-x.
40. Weksler B, Sullivan JL. Survival after esophagectomy: a propensity-matched study of different surgical approaches. Ann Thorac Surg 2017; 104(4): 1138–1146. doi: 10.1016/j.athoracsur.2017.04.065.

Credited self-teaching test