Anonymous User
Login / Registration

Gastroenterologie
a hepatologie

Gastroenterology and Hepatology

Gastroent Hepatol 2021; 75(2): 125–133. doi: 10.48095/ccgh2021125.

Non-invasive methods in the assessment of portal hypertension severity

Soňa Fraňková Orcid.org  1, Jan Šperl Orcid.org  1

+ Affiliation

Summary

Portal hypertension represents a wide spectrum of complications of chronic liver diseases and may present by ascites, oesophageal varices, splenomegaly, hypersplenism, hepatorenal and hepatopulmonary syndrome or portopulmonary hypertension. Portal hypertension and its severity predicts the patient‘s prognosis: as an invasive technique, the portosystemic gradient (HPVG – hepatic venous pressure gradient) measurement by hepatic veins catheterisation has remained the gold standard of its assessment. A reliable, non-invasive method to assess the severity of portal hypertension is of paramount importance; the patients with clinically significant portal hypertension have a high risk of variceal bleeding and higher mortality. Recently, non-invasive methods enabling the assessment of liver stiffness have been introduced into clinical practice in hepatology. Not only may these methods substitute for liver biopsy, but they may also be used to assess the degree of liver fibrosis and predict the severity of portal hypertension. Nowadays, we can use the quantitative elastography (transient elastography, point shear-wave elastrography, 2D-shear-wave elastography) or magnetic resonance imaging. We may also assess the severity of portal hypertension based on the non-invasive markers of liver fibrosis (i.e. ELF test) or estimate clinically signifi cant portal hypertension using composite scores (LSPS – liver spleen stiff ness score), based on liver stiffness value, spleen diameter and platelet count. Spleen stiffness measurement is a new method that needs further prospective studies. The review describes current possibilities of the non-invasive assessment of portal hypertension and its severity.

Keywords

HVPG, tuhost sleziny, tuhost jater, shear-wave elastografie, tranzientní elastografie, portal hypertension, krevní biomarkery

To read this article in full, please register for free on this website.

Benefits for subscribers

Benefits for logged users

Literature

1. Tapper EB, Parikh ND. Mortality due to cirrhosis and liver cancer in the United States, 1999–2016: observational study. BMJ 2018; 362: k2817. doi: 10.1136/bmj.k2817.
2. Asrani SK, Larson JJ, Yawn B et al. Underestimation of liver-related mortality in the United States. Gastroenterology 2013; 145(2): 375–382. doi: 10.1053/j.gastro.2013.04.005.
3. Estes C, Razavi H, Loomba R et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018; 67(1): 123–133. doi: 10.1002/hep.29466.
4. Nahon P, Bourcier V, Layese R et al. Eradication of hepatitis C virus infection in patients with cirrhosis reduces risk of liver and non-liver complications. Gastroenterology 2017; 152(1): 142–156. doi: 10.1053/j.gastro.2016.09.009.
5. Kao JH, Chen DS. Global control of hepatitis B virus infection. Lancet Infect Dis 2002; 2(7): 395– 403. doi: 10.1016/s1473-3099(02)00315-8.
6. Zanetti AR, Van Damme P, Shouval D. The global impact of vaccination against hepatitis B: a  historical overview. Vaccine 2008; 26(49): 6266–6273. doi: 10.1016/j.vaccine.2008.09.056.
7. Jafri SM, Lok AS. Antiviral therapy for chronic hepatitis B. Clin Liver Dis 2010; 14(3): 425–438. doi: 10.1016/j.cld.2010.05.005.
8. McConnell M, Iwakiri Y. Biology of portal hypertension. Hepatol Int 2018; 12(Suppl 1): 11–23. doi: 10.1007/s12072-017-9826-x.
9. Berzigotti A, Bosch J. Pharmacologic management of portal hypertension. Clin Liver Dis 2014; 18(2): 303–317. doi: 10.1016/j.cld.2013.12.003.
10. de Franchis R, Baveno VIF. Expanding consensus in portal hypertension: report of the Baveno VI Consensus Workshop: stratifying risk and individualizing care for portal hypertension. J  Hepatol 2015; 63(3): 743–752. doi: 10.1016/ j.jhep.2015.05.022.
11. Bosch J, Abraldes JG, Berzigotti A et al. The clinical use of HVPG measurements in chronic liver disease. Nat Rev Gastroenterol Hepatol 2009; 6(10): 573–582. doi: 10.1038/nrgastro.2009.149.
12. Lebrec D, De Fleury P, Rueff B et al. Portal hypertension, size of esophageal varices, and risk of gastrointestinal bleeding in alcoholic cirrhosis. Gastroenterology 1980; 79(6): 1139–1144.
13. Garcia-Tsao G, Groszmann RJ, Fisher RL et al. Portal pressure, presence of gastroesophageal varices and variceal bleeding. Hepatology 1985; 5(3): 419–424. doi: 10.1002/hep.1840050313.
14. Groszmann RJ, Garcia-Tsao G, Bosch J et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J  Med 2005; 353(21): 2254–2261. doi: 10.1056/NEJMoa 044456.
15. Ripoll C, Groszmann R, Garcia-Tsao G et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 2007; 133(2): 481–488. doi: 10.1053/j.gastro.2007.05.024.
16. Bureau C, Metivier S, Peron JM et al. Transient elastography accurately predicts presence of significant portal hypertension in patients with chronic liver disease. Aliment Pharmacol Ther 2008; 27(12): 1261–1268. doi: 10.1111/j.1365-2036.2008.03701.x.
17. Silva-Junior G, Baiges A, Turon F et al. The prognostic value of hepatic venous pressure gradient in patients with cirrhosis is highly dependent on the accuracy of the technique. Hepatology 2015; 62(5): 1584–1592. doi: 10.1002/hep.28031.
18. Abraldes JG, Villanueva C, Banares R et al. Hepatic venous pressure gradient and prognosis in patients with acute variceal bleeding treated with pharmacologic and endoscopic therapy. J Hepatol 2008; 48(2): 229–236. doi: 10.1016/j. jhep.2007.10.008.
19. Procopet B, Berzigotti A, Abraldes JG et al. Real-time shear-wave elastography: applicability, reliability and accuracy for clinically significant portal hypertension. J Hepatol 2015; 62(5): 1068–1075. doi: 10.1016/j.jhep.2014.12.007.
20. Stefanescu H, Rusu C, Lupsor-Platon M et al. Liver stiffness assessed by ultrasound shear wave elastography from general electric accurately predicts clinically significant portal hypertension in patients with advanced chronic liver disease. Ultraschall Med 2019; 41(5): 526–533. doi: 10.1055/a-0965-0745.
21. European Association for Study of Liver, Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH clinical practice guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J  Hepatol 2015; 63(1): 237–264. doi: 10.1016/j.jhep.2015.04.006.
22. Calvaruso V, Dhillon AP, Tsochatzis E et al. Liver collagen proportionate area predicts decompensation in patients with recurrent hepatitis C virus cirrhosis after liver transplantation. J Gastroenterol Hepatol 2012; 27(7): 1227–1232. doi: 10.1111/j.1440-1746.2012.07136.x.
23. Nielsen K, Clemmesen JO, Vassiliadis E et al. Liver collagen in cirrhosis correlates with portal hypertension and liver dysfunction. APMIS 2014; 122(12): 1213–1222. doi: 10.1111/apm.12287.
24. Yin M, Kolipaka A, Woodrum DA et al. Hepatic and splenic stiffness augmentation assessed with MR elastography in an in vivo porcine portal hypertension model. J Magn Reson Imaging 2013; 38(4): 809–815. doi: 10.1002/jmri.24049.
25. Yarpuzlu B, Ayyildiz M, Tok OE et al. Correlation between the mechanical and histological properties of liver tissue. J Mech Behav Biomed Mater 2014; 29: 403–416. doi: 10.1016/j. jmbbm.2013.09.016.
26. Yang C, Yin M, Glaser KJ et al. Static and dynamic liver stiffness: an ex vivo porcine liver study using MR elastography. Magn Reson Imaging 2017; 44: 92–95. doi: 10.1016/j.mri.2017.08.009.
27. Kennedy P, Wagner M, Castera L et al. Quantitative elastography methods in liver disease: current evidence and future directions. Radiology 2018; 286(3): 738–763. doi: 10.1148/radiol. 2018170601.
28. Sandrin L, Fourquet B, Hasquenoph JM et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29(12): 1705–1713. doi: 10.1016/j.ultrasmedbio.2003.07.001.
29. Li Y, Huang YS, Wang ZZ et al. Systematic review with meta-analysis: the diagnostic accuracy of transient elastography for the staging of liver fibrosis in patients with chronic hepatitis B. Aliment Pharmacol Ther 2016; 43(4): 458–469. doi: 10.1111/apt.13488.
30. Tsochatzis EA, Gurusamy KS, Ntaoula S  et al. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J Hepatol 2011; 54(4): 650–659. doi: 10.1016/j.jhep.2010.07.033.
31. Stebbing J, Farouk L, Panos G et al. A meta-analysis of transient elastography for the detection of hepatic fibrosis. J  Clin Gastroenterol 2010; 44(3): 214–219. doi: 10.1097/ MCG.0b013e3181b4af1f.
32. Friedrich-Rust M, Ong MF, Martens S et al. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 2008; 134(4): 960–974. doi: 10.1053/j.jgastro.2008.01.034.
33. Talwalkar JA, Kurtz DM, Schoenleber SJ et al. Ultrasound-based transient elastography for the detection of hepatic fibrosis: systematic review and meta-analysis. Clin Gastroenterol Hepatol 2007; 5(10): 1214–1220. doi: 10.1016/j. cgh.2007.07.020.
34. Shaheen AA, Wan AF, Myers RP. FibroTest and FibroScan for the prediction of hepatitis C-related fibrosis: a  systematic review of diagnostic test accuracy. Am J  Gastroenterol 2007; 102(11): 2589–2600. doi: 10.1111/j.1572-0241.2007.01466.x.
35. Shi KQ, Fan YC, Pan ZZ et al. Transient elastography: a meta-analysis of diagnostic accuracy in evaluation of portal hypertension in chronic liver disease. Liver Int 2013; 33(1): 62–71. doi: 10.1111/liv.12003.
36. You MW, Kim KW, Pyo J et al. A meta-analysis for the diagnostic performance of transient elastography for clinically significant portal hypertension. Ultrasound Med Biol 2017; 43(1): 59–68. doi: 10.1016/j.ultrasmedbio.2016.07.025.
37. Maurice JB, Brodkin E, Arnold F et al. Validation of the Baveno VI criteria to identify low risk cirrhotic patients not requiring endoscopic surveillance for varices. J  Hepatol 2016; 65(5): 899–905. doi: 10.1016/j.jhep.2016.06. 021.
38. Augustin S, Pons M, Maurice JB et al. Expanding the Baveno VI criteria for the screening of varices in patients with compensated advanced chronic liver disease. Hepatology 2017; 66(6): 1980–1988. doi: 10.1002/hep.29363.
39. Morishita N, Hiramatsu N, Oze T et al. Liver stiffness measurement by acoustic radiation force impulse is useful in predicting the presence of esophageal varices or high-risk esophageal varices among patients with HCV-related cirrhosis. J Gastroenterol 2014; 49(7): 1175–1182. doi: 10.1007/s00535-013-0877-z.
40. Elkrief L, Rautou PE, Ronot M et al. Prospective comparison of spleen and liver stiffness by using shear-wave and transient elastography for detection of portal hypertension in cirrhosis. Radiology 2015; 275(2): 589–598. doi: 10.1148/radiol.14141210.
41. Cassinotto C, Charrie A, Mouries A et al. Liver and spleen elastography using supersonic shear imaging for the non-invasive diagnosis of cirrhosis severity and oesophageal varices. Dig Liver Dis 2015; 47(8): 695–701. doi: 10.1016/ j.dld.2015.04.008.
42. Thiele M, Hugger MB, Kim Y et al. 2D shear wave liver elastography by Aixplorer to detect portal hypertension in cirrhosis: an individual patient data meta-analysis. Liver Int 2020; 40(6): 1435–1446. doi: 10.1111/liv.14439.
43. Takuma Y, Morimoto Y, Takabatake H et al. Measurement of spleen stiffness with acoustic radiation force impulse imaging predicts mortality and hepatic decompensation in patients with liver cirrhosis. Clin Gastroenterol Hepatol 2017; 15(11): 1782–1790. doi: 10.1016/ j.cgh.2016.10.041.
44. Choi SY, Jeong WK, Kim Y et al. Shear-wave elastography: a noninvasive tool for monitoring changing hepatic venous pressure gradients in patients with cirrhosis. Radiology 2014; 273(3): 917–926. doi: 10.1148/radiol.14140008.
45. Jansen C, Bogs C, Verlinden W et al. Algorithm to rule out clinically significant portal hypertension combining Shear-wave elastography of liver and spleen: a  prospective multicentre study. Gut 2016; 65(6): 1057–1058. doi: 10.1136/ gutjnl-2016-311536.
46. Jansen C, Bogs C, Verlinden W et al. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension: a prospective multicentre study. Liver Int 2017; 37(3): 396–405. doi: 10.1111/liv.13243.
47. Elkrief L, Ronot M, Andrade F et al. Non-invasive evaluation of portal hypertension using shear-wave elastography: analysis of two algorithms combining liver and spleen stiffness in 191  patients with cirrhosis. Aliment Pharmacol Ther 2018; 47(5): 621–630. doi: 10.1111/apt.14488.
48. Kim TY, Jeong WK, Sohn JH et al. Evaluation of portal hypertension by real-time shear wave elastography in cirrhotic patients. Liver Int 2015; 35(11): 2416–2424. doi: 10.1111/liv.12846.
49. Conti CB, Weiler N, Casazza G et al. Feasibility and reproducibility of liver and pancreatic stiffness in patients with alcohol-related liver disease. Dig Liver Dis 2019; 51(7): 1023–1029. doi: 10.1016/j.dld.2018.12.017.
50. Singh S, Venkatesh SK, Loomba R et al. Magnetic resonance elastography for staging liver fibrosis in non-alcoholic fatty liver disease: a diagnostic accuracy systematic review and individual participant data pooled analysis. Eur Radiol 2016; 26(5): 1431–1440. doi: 10.1007/s003 30-015-3949-z.
51. Singh S, Venkatesh SK, Wang Z  et al. Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol 2015; 13(3): 440–451. doi: 10.1016/j.cgh.2014.09. 046.
52. Abe H, Midorikawa Y, Matsumoto N et al. Prediction of esophageal varices by liver and spleen MR elastography. Eur Radiol 2019; 29(12): 6611– 6619. doi: 10.1007/s00330-019-06230-8.
53. Gouya H, Grabar S, Vignaux O  et al. Portal hypertension in patients with cirrhosis: indirect assessment of hepatic venous pressure gradient by measuring azygos flow with 2D-cine phase-contrast magnetic resonance imaging. Eur Radiol 2016; 26(7): 1981–1990. doi: 10.1007/s00330-015-3991-x.
54. Mandorfer M, Hernandez-Gea V, Garcia-Pagan JC et al. Noninvasive diagnostics for portal hypertension: a comprehensive review. Semin Liver Dis 2020; 40(3): 240–255. doi: 10.1055/ s-0040-1708806.
55. Colecchia A, Montrone L, Scaioli E et al. Measurement of spleen stiffness to evaluate portal hypertension and the presence of esophageal varices in patients with HCV-related cirrhosis. Gastroenterology 2012; 143(3): 646–654. doi: 10.1053/j.gastro.2012.05.035.
56. Colecchia A, Ravaioli F, Marasco G et al. A  combined model based on spleen stiffness measurement and Baveno VI criteria to rule out high-risk varices in advanced chronic liver disease. J  Hepatol 2018; 69(2): 308–317. doi: 10.1016/j.jhep.2018.04.023.
57. Stefanescu H, Grigorescu M, Lupsor M et al. Spleen stiffness measurement using Fibroscan for the noninvasive assessment of esophageal varices in liver cirrhosis patients. J Gastroenterol Hepatol 2011; 26(1): 164–170. doi: 10.1111/j.1440-1746.2010.06325.x.
58. Sharma P, Kirnake V, Tyagi P et al. Spleen stif­fness in patients with cirrhosis in predicting esophageal varices. Am J  Gastroenterol 2013; 108(7): 1101–1107. doi: 10.1038/ajg.2013.119.
59. Berzigotti A. Non-invasive evaluation of portal hypertension using ultrasound elastography. J Hepatol 2017; 67(2): 399–411. doi: 10.1016/j. jhep.2017.02.003.
60. Takuma Y, Nouso K, Morimoto Y et al. Portal hypertension in patients with liver cirrhosis: diagnostic accuracy of spleen stiffness. Radiology 2016; 279(2): 609–619. doi: 10.1148/radiol. 2015150690.
61. Attia D, Schoenemeier B, Rodt T et al. Evaluation of liver and spleen stiffness with acoustic radiation force impulse quantification elastography for diagnosing clinically significant portal hypertension. Ultraschall Med 2015; 36(6): 603–610. doi: 10.1055/s-0041-107971.
62. Stefanescu H, Marasco G, Cales P et al. A  novel spleen-dedicated stiffness measurement by FibroScan® improves the screening of high-risk oesophageal varices. Liver Int 2020; 40(1): 175–185. doi: 10.1111/liv.14228.
63. Reiberger T, Ferlitsch A, Payer BA et al. Non- -selective beta-blockers improve the correlation of liver stiffness and portal pressure in advanced cirrhosis. J Gastroenterol 2012; 47(5): 561–568. doi: 10.1007/s00535-011-0517-4.
64. Ling L, Li G, Meng D, Wang S et al. Carvedilol ameliorates intrahepatic angiogenesis, sinusoidal remodeling and portal pressure in cirrhotic rats. Med Sci Monit 2018; 24: 8290–8297. doi: 10.12659/MSM.913118.
65. Piecha F, Paech D, Sollors J  et al. Rapid change of liver stiffness after variceal ligation and TIPS implantation. Am J Physiol Gastrointest Liver Physiol 2018; 314(2): G179–G187. doi: 10.1152/ajpgi.00239.2017.
66. Piyachaturawat P, Siramolpiwat S, Sonsiri K et al. Changes in transient elastography in early cirrhotic patients after receiving nonselective B-blocker for primary variceal bleeding prophylaxis: three-month follow up. JGH Open 2018; 2(5): 172–177. doi: 10.1002/jgh3.12063.
67. Kim HY, So YH, Kim W et al. Non-invasive response prediction in prophylactic carvedilol therapy for cirrhotic patients with esophageal varices. J  Hepatol 2019; 70(3): 412–422. doi: 10.1016/j.jhep.2018.10.018.
68. Marasco G, Dajti E, Ravaioli F et al. Spleen stiffness measurement for assessing the response to beta-blockers therapy for high-risk esophageal varices patients. Hepatol Int 2020; 14(5): 850–857. doi: 10.1007/s12072-020-10062-w.
69. Kamath PS, Kim WR, Advanced Liver Disease Study G. The model for end-stage liver disease (MELD). Hepatology 2007; 45(3): 797–805. doi: 10.1002/hep.21563.
70. Hoffman DH, Ayoola A, Nickel D et al. MR elastography, T1  and T2  relaxometry of liver: role in noninvasive assessment of liver function and portal hypertension. Abdom Radiol (NY) 2020; 45(9): 2680–2687. doi: 10.1007/s00261-020-02432-7.
71. Conejo I, Guardascione MA, Tandon P et al. Multicenter external validation of risk stratification criteria for patients with variceal bleeding. Clin Gastroenterol Hepatol 2018; 16(1): 132–139. doi: 10.1016/j.cgh.2017.04.042.
72. Wiesner RH, McDiarmid SV, Kamath PS et al. MELD and PELD: application of survival models to liver allocation. Liver Transpl 2001; 7(7): 567–580. doi: 10.1053/jlts.2001.25879.
73. Wiesner R, Edwards E, Freeman R et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003; 124(1): 91–96. doi: 10.1053/gast.2003.50 016.
74. Berzigotti A, Seijo S, Arena U et al. Elastography, spleen size, and platelet count identify portal hypertension in patients with compensated cirrhosis. Gastroenterology 2013; 144(1): 102–111. doi: 10.1053/j.gastro.2012.10.001.
75. Frankova S, Lunova M, Gottfriedova H et al. Liver stiffness measured by two-dimensional shear-wave elastography predicts hepatic vein pressure gradient at high values in liver transplant candidates with advanced liver cirrhosis. PLoS One 2021; 16(1): e0244934. doi: 10.1371/journal.pone.0244934.
76. Simbrunner B, Marculescu R, Scheiner B et al. Non-invasive detection of portal hypertension by enhanced liver fibrosis score in patients with different aetiologies of advanced chronic liver disease. Liver Int 2020; 40(7): 1713–1724. doi: 10.1111/liv.14498.
77. Bruha R, Jachymova M, Petrtyl J et al. Osteopontin: a non-invasive parameter of portal hypertension and prognostic marker of cirrhosis. World J Gastroenterol 2016; 22(12): 3441–3450. doi: 10.3748/wjg.v22.i12.3441.
78. Buck M, Garcia-Tsao G, Groszmann RJ et al. Novel inflammatory biomarkers of portal pressure in compensated cirrhosis patients. Hepatology 2014; 59(3): 1052–1059. doi: 10.1002/hep.26755.
79. Miele L, De Michele T, Marrone G et al. Enhanced liver fibrosis test as a  reliable tool for assessing fibrosis in nonalcoholic fatty liver disease in a clinical setting. Int J Biol Markers 2017; 32(4): e397–e402. doi: 10.5301/ijbm.5000292.
80. Jabor A, Kubicek Z, Frankova S et al. Enhanced liver fibrosis (ELF) score: reference ranges, biological variation in healthy subjects, and analytical considerations. Clin Chim Acta 2018; 483: 291–295. doi: 10.1016/j.cca.2018.05.027.
81. Vizzutti F, Arena U, Romanelli RG et al. Liver stiffness measurement predicts severe portal hypertension in patients with HCV-related cirrhosis. Hepatology 2007; 45(5): 1290–1297. doi: 10.1002/hep.21665.
82. Lemoine M, Katsahian S, Ziol M et al. Liver stiffness measurement as a  predictive tool of clinically significant portal hypertension in patients with compensated hepatitis C virus or alcohol-related cirrhosis. Aliment Pharmacol Ther 2008; 28(9): 1102–1110. Epub 2008/08/12. doi: 10.1111/j.1365-2036.2008.03825.x.
83. Sanchez-Conde M, Montes Ramirez ML, Bellon Cano JM et al. Impact of liver steatosis on the correlation between liver stiffness and fibrosis measured by transient elastography in patients coinfected with human immunodeficiency virus and hepatitis C virus. J  Viral Hepat 2011; 18(7): e278–283. doi: 10.1111/j.1365-2893.2010.01407.x.
84. Kitson MT, Roberts SK, Colman JC et al. Liver stiffness and the prediction of clinically significant portal hypertension and portal hypertensive complications. Scand J  Gastroenterol 2015; 50(4): 462–469. doi: 10.3109/00365521.2014.964758.
85. Llop E, Berzigotti A, Reig M et al. Assessment of portal hypertension by transient elastography in patients with compensated cirrhosis and potentially resectable liver tumors. J Hepatol 2012; 56(1): 103–108. doi: 10.1016/j.jhep.2011.06.027.
86. Carrion JA, Navasa M, Bosch J  et al. Transient elastography for diagnosis of advanced fibrosis and portal hypertension in patients with hepatitis C recurrence after liver transplantation. Liver Transpl 2006; 12(12): 1791–1798. doi: 10.1002/lt.20857.

Credited self-teaching test